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Abstract Plant–fungal symbiotic associations are ubiq-

uitously distributed in natural plant communities. Besides

the well-studied mycorrhizal symbiosis and grass systemic

clavicipitaceous endophytes, recently, nonsystemic and

horizontally transmitted fungal endophytes serving as plant

symbionts have been increasingly recognized. Pure culture

isolation and culture-independent molecular methods indi-

cate that all parts of healthy plant tissues potentially harbor

diverse and previously unknown fungal lineages. Limited

evidence also supports a hypothesis that endophytic my-

cobiota dynamics may have a role in evolution of plants.

High variability or ‘‘balanced antagonism’’ can be generally

characterized with host–endophyte interactions, which

implies that the outcome of symbiotic interactions can fall

within a continuum ranging from mutualism to commen-

salism, and ultimately pathogenicity. Despite this compli-

cated system, admittedly, fungal endophytes really endow

the host with an extended phenotype. Accumulating facts

illustrate that plant nutrition acquisition, metabolism, and

stress tolerance may be strengthened or modulated via

fungal symbionts. Piriformospora indica, a member of the

order Sebacinales, simultaneously confers host resistance to

biotic and abiotic stress. The ecological relevance of other

fungal groups, including foliar endophytes, root dark sep-

tate endophytes (DSEs), some opportunistic and avirulent

microsymbionts (for example, Trichoderma and Fusarium),

and even uncultured fungi structurally and physiologically

integrated with host tissues, are also being deeply exploited.

Production of bioactive metabolites by fungi, overexpres-

sion of stress-related enzymes, and induced resistance in

hosts upon fungal colonization are responsible for direct or

indirect beneficial effects to hosts. More knowledge of

endophyte-mediated enhancement of host performance and

fitness will offer alternatively valuable strategies for plant

cultivation and breeding. Meanwhile, with unprecedented

loss of biodiversity, discovery of indigenously novel sym-

biotic endophytes from natural habitats is urgently needed.

In addition, we present some approaches and suggestions

for studying host–endophyte interactions.
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Introduction

Symbiosis, defined as ‘‘the permanent association between

two or more specifically distinct organisms, at least during

a part of the life cycle’’ (de Bary 1879), is known to be a

ubiquitous and important aspect of life on Earth. Most

animals and plants live in close associations with a series of

microorganisms. Evolutionarily, plants require some spe-

cialized microbial partners for adapting to certain ecolog-

ical niches to maintain their normal growth and

development. Rhizobium, actinorhizal and mycorrhizal

symbionts have long been investigated and viewed as the

primary mutualistic microbial symbionts associated with

plant roots (Pawlowski and Bisseling 1996; Diouf and

others 2003). In addition, aboveground plant–fungal

mutualistic interactions also exist in some temperate and
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tropical grasses and it is well known that endophytic sys-

temic clavicipitaceous fungi colonize inner grass leaf tissue

and exert beneficial effects on hosts through increased

resistance to herbivores, pathogens, and drought stresses

(Kuldau and Bacon 2008).

Most agree that endophytes are fungi that live internally

and remain asymptomatic for at least part of their life cycle

(Wilson 1995). Thus, endophytes encompass a wide range

of fungi, including latent pathogens and dormant sapro-

phytes. However, recent phylogenetic data demonstrate

that some endophytes are genetically distinct from known

parasites in the same host despite their morphological

identity (Ganley and others 2004). Carroll (1988) defined

two different types of endophytic fungi: constitutive

mutualists (type I endophyte) and inducible mutualists

(type II endophyte). It is usually proposed that most type I

clavicipitaceous endophytes (Epichloi/Neotyphodium) are

systemic and vertically transmitted through seeds and

exclusively infect grass. Instead, nonsystemic type II

endophytes are taxonomically diverse, horizontally trans-

mitted from plants to plants, and colonize all plants in

ecosystems (Rodriguez and others 2008).

Recently, nonsystemic endophytic fungi identified in a

very wide range of host plant species have met with

increasing attention due to their striking species diversity

and multiple functions (Rodriguez and others 2008).

Unlike other plant-microbe symbiotic relationships, how-

ever, plant–fungal endophyte associations generally occur

in both aboveground and belowground plant tissues (Faeth

and Fagan 2002). Strongly supported evidence has revealed

that type II endophytes represent more or less phylogenetic

diversity when compared to type I endophytes and

mycorrhizal symbionts (Arnold and others 2002; Faeth and

Fagan 2002; Vandenkoornhuyse and others 2002). It has

been suggested that the endophyte and its host is a balanced

antagonism or conditional mutualism (Schulz and Boyle

2005; Donoso and others 2008), which depends on the

status of two partners. The plant’s physiology and geno-

type, the genotype and virulence of the fungi, together with

the environmental context ultimately determine the out-

come of plant-endophyte interactions (Freeman and

Rodriguez 1993; Redman and others 2001; Donoso and

others 2008). It appears that variability is the nature of the

endophyte-plant interaction.

However, we propose that despite the complex and

labile associations, recent advances in microbial ecology

have demonstrated the pivotal roles of type II endophytes

in improving host growth, fitness, and stress responses

(Waller and others 2005; Porras-Alfaro and others 2008;

Rodriguez and others 2008). In some cases, harboring these

symbiotic fungi is indispensable to the survival of hosts,

implying the evolution of life history strategies of plants

(Redman and others 2002). In this review article we try to

outline the current knowledge of type II fungal endophytes

with special reference to some well-studied fungal lin-

eages, and focus on their beneficial physiological interac-

tions with hosts, which may expand our views on how

plants accommodate fungal endophytes to adapt to adverse

conditions and improve nutrition acquisition in a compet-

itive ecological community.

Diversity of Type II Fungal Endophytes

and Implications for Plant Evolution

Estimation and Characterization of Endophytic Fungal

Diversity with Traditional and Molecular Tools

Fungi are an important key group of diverse microorgan-

isms in terrestrial ecosystems because of their pivotal role

in the carbon cycle. They also directly establish intimate

relationships with plants, animals, and other organisms. It

has been estimated that there are no fewer than 1.5 million

fungal species on Earth (Hawksworth 2001), whereas a

minimum number of 712,000 fungal species has also been

estimated (Schmit and Mueller 2007). However, an ITS-

based survey of environmental samples yields soil fungal

species richness ranging from 3.5 to 5.1 million (O’Brien

and others 2005). There is still debate on the true scale of

fungi in nature. In any case, there is no doubt that the

remarkably diverse fungal species make great contributions

to ecological patterns and processes.

From numerous investigations, there is now growing

evidence that endophytic fungi represent formerly

uncharted fungal lineages and comprise vast amounts of

fungal diversity on a global scale (Arnold and others 2002;

O’Brien and others 2005). Frequently, some recovered

isolates cannot be identified as they are sterile or ITS

sequences do not resemble any described species in the

database, potentially being assigned to a new taxonomic

class. Therefore, the isolation and characterization of the

fungal community associated with a wide range of hosts

not only helps us estimate the diversity of fungi but pro-

vides raw material for further investigation of interactive

mechanisms of the two partners (Collado and others 2007).

It was pointed out recently that the dilution-to-extinction

culture method has been used successfully to recover more

diverse endophytic fungi species from leaf tissues than the

segment plating method. This high-throughput cultivation

procedure provides promise for further basic endophyte

biology research (Collado and others 2007; Unterseher and

Schnittler 2009). In addition, ecological indices, including

Fisher’s a, Shannon diversity index (H), Simpson’s diver-

sity index (D), Margalef’s richness index (R1), and species

accumulation curves (generated by EstimateS, http://

viceroy.eeb.uconn.edu/EstimateS), are used to evaluate
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the fungal diversity in plants (Suryanarayanan and Ku-

maresan 2000; Hoffman and others 2008; Tao and others

2008).

Meanwhile, culture-independent molecular methods

offer the possibility of better understanding the mycobiota

that naturally reside in the inner tissues of plants (Arnold

and others 2007) and are recognized as an important

complement to conventional culture methods. Direct clone

library sequencing, high-throughput sequencing, DGGE,

and PCR-AFLP are the prevailing tools used for molecular

analysis (Allen and others 2003; Nikolcheva and Bärlocher

2005a, b; O’Brien and others 2005; Peay and others 2008;

Zuccaro and others 2008). It is also critical to note that

Fungal Environmental Sampling Network (FESIN,

http://www.bio.utk.edu/fesin/), a well-established platform,

has been initiated to improve the knowledge of fungal

identity, diversity, and ecology with advanced molecular

and phylogenetic tools.

Increasing research focuses on the endophytic fungal

community of plants exposed to extreme environments or

that occupy unique niches (El-Morsy 2000; Collado and

others 2002; Barrow and others 2004b; El-Zayat and others

2008; Porras-Alfaro and others 2008; Maciá-Vicente and

others 2008a). It is reasonable to speculate that such unique

ecological niches may sustain diverse or novel fungal

species contributing to the host’s response to external stress

signals. A novel endophytic Curvularia sp., isolated from a

thermotolerant plant (Dichanthelium lanuginosum),

increases host heat tolerance (Redman and others 2002).

Apart from the recognized fungal species diversity and

community of woody plants, direct clone library sequenc-

ing detects extensively distinct fungal groups occurring in

desert perennial grass roots (Vandenkoornhuyse and others

2002; Porras-Alfaro and others 2008) and reveals that dark

septate endophytes (DSEs) within the order of Pleosporales

dominantly encounter roots and 51 operational taxonomic

units (OTU) have been recorded (Porras-Alfaro and others

2008). Dendrobium nobile, an epiphytic orchid, hosts at

least 33 different nonmycorrhizal fungal morphospecies

belonging to 14 genera (Yuan and others 2009). Surpris-

ingly, our data also suggest a rich endophyte assemblage in

the roots of wild rice (Oryza granulata), a gramineous

plant in China. Thirty-one distinct ITS genotypes based on

cultured isolates and 35 potentially unique phylotypes

generated by direct PCR were determined despite their low

colonization rate (unpublished data). These results provide

additional evidence that endophytes residing in annual or

perennial herbaceous plants may be as rich as those found

in woody plants (Saikkonen and others 1998).

Admittedly, there is certainly a great body of literature

describing the endophytic fungal diversity associated with

a wide range of hosts. The question remains: What roles do

these cohabiting colonizers play in natural ecosystems?

Do Endophytic Fungal Population Dynamics Drive

Plant Evolution?

Currently, the hologenome theory of evolution hypothe-

sizes that the diversity of microbial symbionts associated

with animals and plants plays an important role in the

nutrition and the adaptation of hosts to a stressful envi-

ronment, thus evolving the holobiont (Rosenberg and oth-

ers 2007; Zilber-Rosenberg and Rosenberg 2008). The

authors emphasize the importance of diversity of micro-

biota in the evolution of the hosts because the genetic

diversity of the microbial consortium can extend the range

of the environment in which hosts will successfully survive

(Zilber-Rosenberg and Rosenberg 2008). It is also recog-

nized that the diversity and ecological roles of fungal

endophytes were previously underestimated and that they

contribute benefits to their hosts in multiple ways (see

below). These fungi may influence the plant metabolic

state, mainly through communication and transduction

between the two partners, and contribute genes and rele-

vant bioactive products that enable plants to successfully

respond to biotic and abiotic stresses (Barrow and others

2008). Considering the rich endophytic assemblage, even

some unculturable endophytes are structurally integrated

with the host’s inner tissues; it is therefore not surprising

that this fungal consortium will have a major influence on

plant adaptation and evolution (Barrow and others 2008). It

can be proposed that the plant-endophyte functional units

are better prepared to face stress situations.

Type II Fungal Endophyte–Host Relationships:

A General and Novel System for Studying

Mutualistic Plant–Fungal Interactions

Considerable information on plant–fungal interactions

involving mycorrhizal symbiosis and pathogenic interac-

tions is available. The recent literature has provided more

evidence that some common symbiosis (SYM) signaling

pathways are present in plants for harboring different

beneficial microbes (Gutjahr and others 2008). Plants have

also evolved ancient and conserved biochemical events and

gene regulation for responding to mycorrhizal fungi and

pathogenic fungi colonization (Güimil and others 2005;

Kogel and others 2006). However, host-specific molecular

mechanisms for guarding against endophytic fungi entry

are possibly different from other fungal groups (Gutjahr

and others 2008). To gain insight into the physiological

interactions and signal exchanges of endophytes and their

hosts, establishment of in vitro model systems for assessing

host interactions with endophytic fungi is required. The

molecular dialogue and gene regulation for maintaining

grass-endophyte mutualistic associations are beginning to
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be revealed (Tanaka and others 2006). High host specificity

and low fungal species diversity are characteristic of grass-

endophyte associations; this appears to be a unique and

special case. Preferentially, type II fungal endophytes

represent an interesting experimental model of host–

endophyte interaction because of their ubiquity and diver-

sity (Scannerini and others 2002; Van Bael and others

2005). Host cell suspensions, calli, and plantlets can be

cocultured with fungal endophytes under controlled and

axenic conditions for analyzing the metabolic changes in

both partners (Peters and others 1998; Mucciarelli and

others 2003; Baldi and others 2008; Li and Tao 2009).

The next important issue to be resolved is how to

establish an appropriate model system for revealing species

interactions that influence plant growth and development.

Based on personal communication, experience, and the

work of others, we present here some suggestions:

1. The easy and short-term procedure for mass propaga-

tion of aseptic plantlets in vitro. Availability of seeds

of herbaceous and woody plants provides the pre-

requisite for subsequent analysis. Threobroma cacao

L., Arabidopsis thaliana (L.), and important crop

plants may be good alternatives (Arnold and others

2003; Peskan-Berghofer and others 2004; Rodriguez

and others 2008).

2. Information is available on the genetic background of

the host plant. At least some metabolic pathways or

other phenotype-related genes are well understood,

which is necessary to demonstrate the ecophysiology

and gene expression profiles of hosts upon fungal

colonization. Mentha piperita, Artemisia annua,

Camptotheca acuminate, and other model plants are

ideal candidates (Wang and others 2001; Mucciarelli

and others 2003).

3. Stress-adapted and non-cultivated status of plants

probably host unique, rich and novel indigenous fungi.

The no host-specificity of these fungi makes them a

potentially good fungal resource for applying to native

and nonhost plants (Hung and others 2007; Barrow and

others 2008; Thomas and others 2008).

Principles, Methods, and Techniques in Studying

Plant–Fungal Endophyte Systems

A great deal of knowledge has been compiled about

mycorrhizal associations and plant-pathogenic fungi inter-

actions, and related tools and techniques are already

available. Given that endophyte–plant interactions share

similar evolutionary and ecological processes with other

host-mutualist, host-parasite, and host-disease interactions

(Saikkonen and others 2004), it seems likely that most

approaches and principles applied in plant pathology and

mycorrhizal biology are also appropriate for studying

endophyte biology. Here, we outline some generally

accepted views and methods from the published literature

(Arnold and others 2003; Tanaka and others 2006;

Grunewaldt-Stöcker and others 2007; Kharkwal and others

2007; Shahollari and others 2007; Kemppainen and others

2008) (Fig. 1).

Host Secondary Metabolite Profiles Affected

by Endophytic Colonization

Plant-associated microbes, if any, can exert beneficial,

neutral, or detrimental effects on plant performance. Sig-

nals released from the two partners and the process of

recognition and transduction will strongly modulate the

host metabolic state and level to determine whether the

interaction is compatible or incompatible (Nurnberger and

Lipka 2005). In rhizobium and mycorrhizal symbiotic

associations, conserved signaling pathways and molecular

dialogue events are of great importance to the maintenance

of functional symbiosis, thus accompanied by the differ-

ential gene expressions and transcript regulation in roots,

ultimately resulting in marked changes of primary and

secondary root metabolism (Savouré and others 1994;

Fujihara and others 2006). For example, stimulation of

carotenoid metabolism and modulation of flavonoid levels

and lipid synthesis have been investigated in arbuscular

mycorrhizal (AM) roots (Fester and others 2002; Schlie-

mann and others 2008). The concentration of phenolics in

Echinacea purpurea is also significantly increased upon

AM colonization (Araim and others 2009).

Although knowledge of molecular interactive mecha-

nisms regulating plant-endophyte associations is limited, it

is also reasonable to assume that these intimate plant–

fungal interactions are much more than simple physical

contact. Similar to mycorrhizae, cell recognition and bio-

chemical changes must be present (Mucciarelli and others

2002). In peppermint (Mentha piperita), a plant growth-

promoting endophytic fungus HSF can change the com-

position of the essential oil and increase terpene volatili-

zation from leaves. The authors contend that terpenoid

profiling and distribution among roots, leaves, and fungal

mycelia may be critical for establishing a fine-tuned plant–

endophyte mutualistic association (Mucciarelli and others

2003, 2007). Likewise, endophyte-induced targeted plant

secondary metabolite accumulation offers new tools for

medicinal plant cultivation and breeding. Currently, Piri-

formospora indica and Sebacina vermifera, living as

endophytes in a variety of hosts, have gained increasing

attention. In vitro and ex vitro coculture systems verify that

both fungal species possess pronounced plant growth-
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stimulating capacity and induce plant secondary metabolite

accumulation, such as spilanthol in Spilanthes calva and

podophyllotoxins in Linum album (Rai and others 2001,

2004; Baldi and others 2008). In addition, Fusarium

mairei, a paclitaxel-producing endophyte, also enhances

the paclitaxel production in Taxus cuspidate cell suspen-

sion (Li and Tao 2009). These interesting achievements

may motivate us to explore fungal endophytes as effective

and beneficial fungal agents to enhance the chemical pro-

duction of medicinal plants and develop novel strategies to

improve the quality of plant-based medicine on an indus-

trial scale (Saxena and others 2005; Yuan and others 2007).

Host-Improved Performance and Stress Tolerance

Conferred by Endophytic Symbionts

Plant nutrition acquisition and growth promotion

strengthened via endophytic symbionts resemble some

features of mycorrhizal interactions but clearly differ from

mycorrhizal symbiosis in some aspects (Sherameti and

others 2005; Kogel and Schafer 2009). Phytohormones,

siderophores, and nitrogen- and phosphorus-assimilating

related enzymes produced by endophytic fungi have been

extensively determined and are strongly related to the

improvement of plant nutrition and performance (Gasoni

and others 1997; Maccheroni and Azevedo 1998; Bart-

holdy and others 2001; Obledo and others 2003; Malla and

others 2004; Sherameti and others 2005; Sirrenberg and

others 2007; Khan and others 2009).

Plants are always exposed to adverse environments such

as arid lands and high temperatures or to pathogens, but

they routinely survive. Recent advances in fungal ecology

have revealed that some of this tolerance or resistance

comes not from the plant itself, but from the cryptic

fungi residing in the plant’s tissues. Although mycorrhizal

fungi and grass clavicipitaceous endophyte-mediated

stress resistance has been well documented (Pozo and

Fig. 1 Procedures for

clarification of the

morphological, physiological,

and molecular interactions in

plant–fungal endophyte

associations. REMI, restriction

enzyme-mediated integration;

ATMT, Agrobacterium
tumefaciens-mediated

transformation; PR protein,

pathogenesis-related protein
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Azcon-Aguilar 2007; Kuldau and Bacon 2008), few details

are known about the ecological significance of type II

endophytes. In some ecosystems, DSEs live more fre-

quently as dominant root mycobiota than do mycorrhizal

fungi (Wilberforce and others 2002a, b), which is indicative

of equally important functions of root endophytic fungi.

Recently, symbiotic functionality of foliar endophytes

(Herre and others 2005), DSEs (Mandayam and Jumpponen

2005), and other opportunistic, avirulent root micro-

symbionts (Harman and others 2004; Bacon and Yates 2006)

has begun to be revealed. Moreover, some type II endo-

phytes are vertically transmitted and also generally increase

the vigor and biomass of plants (Ernst and others 2003;

Barrow and others 2004b; Lucero and others 2006). Inter-

estingly, the host range of endophytic fungi recovered from

natural vegetation or extreme habitats is usually extensive,

suggesting future biotechnological applications of native

functional fungal endophytes as inoculum by transferring

them into nonhost important crop plants for improvement

of desired agronomic traits (Barrow and others 2008;

Lucero and others 2008; Maciá-Vicente and others 2008b).

There are three hypothetical explanations of how type II

endophytes confer host resistance to a series of biotic and

abiotic stressful conditions. ‘‘Habitat-adapted symbiosis’’ is

when symbiotically mediated resistance is a habitat-specific

phenomenon and at least some plants rely on intergenomic

epigenetic mechanisms provided by fungal endophytes to

combat extreme environments. Native fungal endophytes

isolated from geothermal habitats conferred survival to

plants under high temperature but not salt tolerance. More-

over, some endophytic fungal strains recovered from crops

conferred disease resistance but not heat or salt resistance.

‘‘Symbiotic modulation’’ is when selective pressures in

adjacent microhabitats drive plants to change the endophytic

fungal community and endophytes change plant hosts; it

may play an important role in plant invasion. ‘‘Symbiotic

lifestyle switching’’ is when the same endophytic fungal

species may express both mutualistic and pathogenic life-

styles depending on different host species (Rodriguez 2007;

Rodriguez and others 2008). However, there would be an

exception for ‘‘habitat-adapted symbiosis’’. Surprisingly, we

are still fascinated with the new champion of symbiosis,

Piriformospora indica, which was isolated from the rhizo-

sphere soil of the desert. Growth, yield, salt tolerance, and

pathogen protection in a variety of plants are simultaneously

promoted after inoculation with P. indica (Waller and others

2005, 2008). These results challenge the notion that patho-

gen resistance always has physiological costs resulting in

yield decrease (Kharkwal and others 2008).

Nevertheless, possible cellular mechanisms of improved

abiotic stress tolerance as a result of plant-endophyte

mutualism seem scarcely understood. It has been presumed

that fungal infection resulted in the priming of expression

of a set of stress-related genes or eliciting stress-hormone

production (for example, abscisic acid) compared to un-

colonized plants (Sherameti and others 2008). Furthermore,

symbiotic fungi may also promote the activation by plants

of the biosynthesis of proline or antioxidant enzymes to

scavenge the ROS (Rodriguez and Redman 2005; Bal-

truschat and others 2008). Increased antioxidant enzyme

activity, including CAT (catalase), APX (ascorbate per-

oxidase), DHAR (dehydroascorbate reductase), MDHAR

(monodehydroascorbate reductase), and GR (glutathione

reductase), plays a significant role in tolerance to abiotic

stressors. Baltruschat and others (2008) point out that these

enzyme activities are maintained at a high level in P.

indica-infected plants but decrease gradually in uninfected

plants. Furthermore, fungi may also produce compounds

necessary for heat or drought tolerance. Limited evidence

has indicated that the mucilaginous matrix (polysaccha-

ride), melanin, mannitol, and trehalose produced by

endophytic fungi are necessary for enabling hosts to work

better (Barrow and others 2004a; Usuki and Narisawa

2007). Although many reports have verified the protective

properties of trehalose against abiotic stress in bacteria,

fungi, and animals, most plant species do not appear to

accumulate detectable levels of trehalose (Garg and others

2002). Transgenic rice plants that overproduce Escherichia

coli trehalose biosynthetic genes have high tolerance to

abiotic stress (Garg and others 2002). It seems likely that

production of trehalose in vivo by endophytes may be the

key mechanism for allowing hosts to compete successfully

under stress conditions. Moreover, ternary interactions with

mycoviruses may also be an important component of

plant–endophyte associations with respect to stress toler-

ance (Márquez and others 2007), indicating more compli-

cated interactive patterns than in mycorrhizal symbiosis.

It is recently found that bacteria are intimately associ-

ated with some symbiotic fungi and this could be extended

to P. indica, because bacteria of the species Rhizobium

radiobacter (formerly Agrobacterium tumefaciens) are

closely associated with this fungus (Sharma and others

2008). Specific fluorescence-labeled phylogenetic oligo-

nucleotide probes for these bacteria and confocal laser

scanning microscopy could clearly reveal the endofungal

localization. In addition, Sharma and others hypothesize

whether the endofungal bacterium contributes to the

observed plant growth promotion and increased systemic

resistance. Therefore, it is presumed that bacteria–fungus–

plant or virus–fungus–plant triple symbiosis is highly

required for the fulfillment of symbiotic functions.

It has long been recognized that exploitation of fungi as

biological control agents is commercially valuable. Unfor-

tunately, to date, the commercialization process and the

market success of biological control agents have been lim-

ited. Trichoderma, Gliocladium, and some entomogenous
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fungi are promising agents (Hjeljord and Tronsmo 1998;

Vega and others 2008). Therefore, searching for novel and

effective fungal organisms is urgently needed. Recently,

emphasis on resistance to plant disease afforded by endo-

phytic fungi is emerging and recorded. Unlike antagonistic

fungi from soil, all of which are sensitive to environmental

factors and to competition with other cocolonizing microbes,

endophytes preferentially reside in inner plant tissues and are

protected from the physical barrier and encounter less

competition. Most importantly, fungal endophyte-mediated

induced resistance in plants has also been addressed (Arnold

and others 2003; Ganley and others 2008). Hence, it can be

predicted that development of endophytic fungi as alterna-

tive microbial agents may be a long-term biocontrol strategy

for plant protection and disease management (Redman and

others 1999; Arnold and others 2003; Waller and others

2005).

Three potential mechanisms underlying endophyte-

mediated resistance to herbivorous insects have been

hypothesized and tested (Arnold and Lewis 2005; Arnold

2008). Direct antagonism and production of toxic secondary

metabolites are recognized as general patterns for reducing

insect performance (Johnson and Whitney 1994; McGee

2002; Miller and others 2002). Recently, some pathogens of

insects—entomopathogenic fungi including Beauveria

bassiana, Paecilomyces sp., Clonostachys rosea—were

also characterized with their endophytism in living plant

tissues (Quesada-Moraga and others 2006; Vega and others

2008). Irrigation, spraying, and injection inoculation

methods confirm the wide host range of these fungal groups,

which provides a model system for understanding the

ecology of endophytic symbiosis and the roles of entomo-

pathogenic fungi with regard to insects (Posada and others

2007). Finally, Carroll (1991) proposed a hypothesis that

endophytes protect hosts in a mosaic-class defense manner

whereby the diverse fungal endophytes establish a hetero-

geneous chemical background in leaves, resulting in dif-

ferent reactions to pathogens for genetically uniform plants.

Concluding Remarks and Perspectives

It is widely accepted that fungal and bacteria endophytes

(Schulz and Boyle 2006) are ubiquitous in plants and are an

important component of biological diversity on Earth. The

abundance and diversity of fungal endophytes in plant tis-

sues are accompanied by their diversified functions. Current

knowledge of endophytic biology might be only the tip of

the iceberg. Because nearly all plants participate in sym-

biosis with a variety of cryptic fungi, ignorance and

underestimation of their entity may make it difficult to fully

understand plant biology (Herre and others 2007). If fungal

effects on hosts are clearly large, it is hard to conclude that

the plant phenotype (properties) is due to the individual

plant (Moran 2007). The benefits and costs for accommo-

dating endophytic fungi in plants may also become a

challenging problem (Clay 2004), still yet to be elucidated.

Another interesting subject waiting to be clarified is how

many more novel multifunctional symbiotic endophytes

like P. indica can be discovered in natural habitats? With

the unprecedented loss of biodiversity, it is imperative to

collect endophyte germplasm, especially for rare and

endangered plant species (Strobel 2007). Meanwhile, one

can speculate that fungi isolated from unique or extreme

environments are generally related to their molecular traits

that affect plant performance (Kogel and Langen 2005),

deserving further consideration and exploration. Biopro-

specting ‘‘competent or true endophytes’’ for biological

control of pathogens and plant breeding is an important

issue for future research. Examination of the infectiveness,

effectiveness, and competitiveness of recovered fungal

isolates when establishing beneficial plant-microbe asso-

ciations is a principle for bioprospecting (Hardoim and

others 2008). Furthermore, increasing evidence indicates

that P. indica displays clearly unique characteristics in

interactions with plants when compared to AM fungi

(Deshmukh and others 2006; Kogel and Schafer 2009).

Therefore, deciphering host–endophyte associative symbi-

osis may generate a great deal of unexpected information

about plant–fungal mutualistic interactions. Muscodor may

also be a peculiar fungal genus. Although production of

antimicrobial volatile compounds in vitro by these fungi

has been determined, knowledge of the distribution pattern,

ecology, and basic biology of Muscodor is still largely

incomplete (Strobel 2006; Strobel and others 2007). The

absence of the teleomorph state and any sporulating

structure of Muscodor raises questions about their repro-

duction style and transmission model in nature.

Further exploitation of the ecological significance of

horizontally transmitted endophytes will extend our views

on plant-environment interactions and fungal ecology and

lead to new strategies for plant cultivation and breeding.
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G, Janeczko A, Kogel KH, Schäfer P, Schwarczinger I, Zuccaro

A, Skoczowski A (2008) Salt tolerance of barley induced by the

root endophyte Piriformospora indica is associated with a strong

increase in antioxidants. New Phytol 180:501–510

Bartholdy, Berreck M, Haselwandter K (2001) Hydroxamate sider-

ophore synthesis by Phialocephala fortinii, a typical dark septate

fungal root endophyte. Biometals 14:33–42

Barrow JR, Lucero M, Osuna-Avila P, Reyes-Vera I, Aaltonen RE

(2004a) Fungal genomes that influence basic physiological

processes of black grama and fourwing salt bush in arid

southwestern rangelands. In: Proceedings of Shrubland dynamics

– fire and water. Lubbock, TX, 10–12 August 2004, pp 123–131

Barrow JR, Osuna-Avila P, Reyes I (2004b) Fungal endophytes

intrinsically associated with micro-propagated plants regenerated

from native Bouteloua eriopoda Torr. and Atriplex canescens

(Pursh.) Nutt. In Vitro Cell Dev Biol Plants 40:608–612

Barrow JR, Lucero ME, Reyes-Vera I, Havstad KM (2008) Do

symbiotic microbes have a role in plant evolution, performance

and response to stress? Commun Integr Biol 1:1–5

Carroll G (1988) Fungal endophytes in stems and leaves: from latent

pathogen to mutualistic symbiont. Ecology 69:2–9

Carroll GC (1991) Beyond pest deterrence. Alternative strategies and

hidden costs of endophytic mutualisms in vascular plants. In:

Andrews JH, Hirano SS (eds) Microbial ecology of leaves.

Springer-Verlag, NewYork, pp 358–375

Clay K (2004) Fungi and the food of the gods. Nature 427:401–402
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